Constraining ΔG at low-x with Double Longitudinal Spin Asymmetries for Forward Hadrons in PHENIX

CAMERON MCKINNEY, University of Illinois, PHENIX COLLABORATION — Currently, global fits of the gluon polarization $\Delta g(x)$ are constrained by PHENIX and STAR data from polarized p+p collisions at RHIC in the range $0.03 < x < 0.3$. These fits yield a first moment of the gluon polarization, ΔG, consistent with zero, but they are not sensitive to possible contributions to ΔG from the low-x region. By measuring A_{LL} for forward $3.1 < \eta < 3.9 \pi^0$ production in the Muon Piston Calorimeter (MPC) at PHENIX, we aim to probe the structure of $\Delta g(x)$ in this low-x region. Production of hadrons at large pseudo-rapidities is favored in asymmetric collisions between a high-x quark and a low-x gluon that give the center of momentum frame a large forward boost. Simulations using the event generator PYTHIA have shown that measuring forward π^0's can access $\Delta g(x)$ for $x \sim 10^{-3}$. Here, we present the analysis status of A_{LL} for merged π^0's in the MPC at $\sqrt{s} = 500 GeV$ from the 2009 dataset. This data along with data from polarized p+p runs at PHENIX through 2015 will help to provide stronger constraints on the form of $\Delta g(x)$ for ongoing global analyses.

Cameron McKinney
University of Illinois

Date submitted: 05 Jul 2011
Electronic form version 1.4