Abstract Submitted for the DNP11 Meeting of The American Physical Society

Collins Asymmetry Contributions to Quark Transversity Constraints in Mid-Rapidity Jets in $p^{\uparrow}p$ Collisions at STAR ROBERT FER-SCH, University of Kentucky, STAR COLLABORATION — Proton quark transverse spin distributions ($\delta q(x, Q^2)$) are less well-constrained than longitudinal spin distributions ($\Delta q(x, Q^2)$) due to the limited amount of transverse spin data available to separate Collins and Sivers effects. Measurement of the azimuthal asymmetry of π^{\pm} mesons within reconstructed jets in $p^{\uparrow}p \rightarrow jet(\pi^{\pm}) + X$ reactions observed in the Solenoidal Tracker at RHIC (STAR) at midrapidity ($|\eta| < 1.0$) enables isolation of the Collins effect, and thus offers additional constraints to $\delta q(x, Q^2)$ parametrizations, which currently include Belle measurements of Collins fragmentation in e⁺e⁻ collisions and HERMES and COMPASS measurements of the Collins asymmetry in deep-inelastic lepton-nucleon scattering. We present progress toward asymmetry measurements from $\sqrt{s} = 200$ GeV transversely polarized (~58%) proton collision data (totalling ~1 pb⁻¹), for average quark momentum fraction $\langle x \rangle \sim 0.2$.

> Robert Fersch University of Kentucky

Date submitted: 05 Jul 2011

Electronic form version 1.4