Ratio of Kaon and Pion valence-quark parton distributions¹ JEF-FREY TIBBALS, Seattle University — The K^+ and π^+ are composed of two valence quarks each, $u\bar{s}$ and ud, respectively. The ratio of momentum fractions carried by the up valence quarks, u_K/u_π, has been measured by Badier et al. [1], and found to decrease with increasing Bjorken x. I extend the statistical model of Zhang et al. [2] to calculate the parton distribution functions for the K^+ meson and the π^+ meson. I consider the π^+ and K^+ as an infinite series expansion of quark-gluon Fock states. The probabilities of each state were calculated using detailed balance and the three processes $q \leftrightarrow qg$, $g \leftrightarrow q\bar{q}$ and $g \leftrightarrow gg$. I find a sea asymmetry of $\bar{d} - \bar{u} \approx 0.265$ in the K^+, but no sea asymmetry in the π^+. I used the RAMBO program to produce a Monte Carlo simulation for the momentum distributions of the n-parton Fock states of both K^+ and π^+, which determine the momentum distribution functions of the mesons. I compare the ratio of momentum fractions carried by the up valence quarks in each meson, u_K/u_π, to the experimental results, and to other theoretical calculations.

¹This research has been supported in part by the Research in Undergraduate Institutions program of the National Science Foundation, Grant No. 0855656.