Abstract Submitted for the DNP11 Meeting of The American Physical Society

Ratio of Kaon and Pion valence-quark parton distributions ¹ JEF-FREY TIBBALS, Seattle University — The K^+ and π^+ are composed of two valence quarks each, $u\bar{s}$ and $u\bar{d}$, respectively. The ratio of momentum fractions carried by the up valence quarks, u_K/u_π , has been measured by Badier et al. [1], and found to decrease with increasing Bjorken x. I extend the statistical model of Zhang et al. [2] to calculate the parton distribution functions for the K^+ meson and the π^+ meson. I consider the π^+ and K^+ as an infinite series expansion of quark-gluon Fock states. The probabilities of each state were calculated using detailed balance and the three processes $q \rightleftharpoons qg$, $g \rightleftharpoons q\bar{q}$ and $g \rightleftharpoons gg$. I find a sea asymmetry of $\bar{d} - \bar{u} \approx 0.265$ in the K^+ , but no sea asymmetry in the π^+ . I used the RAMBO program to produce a Monte Carlo simulation for the momentum distributions of the n- parton Fock states of both K^+ and π^+ , which determine the momentum distribution functions of the mesons. I compare the ratio of momentum fractions carried by the up valence quarks in each meson, u_K/u_π , to the experimental results, and to other theoretical calculations.

- [1] J. Badier et al., Phys. Lett. B 93 (1980) 354.
- [2] Y.-J. Zhang et al., Phys. Lett. B 523 (2001) 260.

¹This research has been supported in part by the Research in Undergraduate Institutions program of the National Science Foundation, Grant No. 0855656.

Jeffrey Tibbals Seattle University

Date submitted: 28 Jul 2011 Electronic form version 1.4