Abstract Submitted for the DNP11 Meeting of The American Physical Society

Search for induced depletion of 108m Ag with 6 MeV bremsstrahlung KAATRIN NETHERTON, ARL, Drexel University, STANLEY HENRIQUEZ, NINO PEREIRA, MARC LITZ, JAMES CARROLL, ARL, ALTERNATIVE ENERGY TEAM — The nuclide 108 Ag has a complicated and not yet well understood energy structure with numerous excited states. One of these, 108m Ag, is a metastable state with a half-life of 418 years and a significantly higher energy than the ground state. The ground state has a 2.37 min half-life and a large β^- decay branch with $Q_{\beta-}=1.649$ MeV. While these traits make the isomer a good candidate for energy storage, the rarity of its natural decays makes it difficult to utilize its stored energy. Through irradiation of a 108m Ag source, it might be possible to bypass the natural decay path and induce an energy release by transferring population from the isomer to the ground state. The poster will describe the implementation of an automated system by which to perform repeated tests of 108m Ag depletion using 6 MeV bremsstrahlung and preliminary results will be given.

Kaatrin Netherton ARL, Drexel University

Date submitted: 28 Jul 2011 Electronic form version 1.4