Abstract Submitted for the DNP11 Meeting of The American Physical Society

Nuclear Physics of DNA: Evidence for Mutations of Free DNA Nucleotides in Nuclear Inelastic Scattering with 14 MeV Neutrons and Applications¹ BOGDAN C. MAGLICH, LUZ MARIE AQUINO, CHRIS DRUEY, CALSEC California Science & Engineering Corp., ANNA Z. RADOVIC, UCI — First experimental study of interactions between nuclear particles whose $\sim 10^{-15}$ m and *nano*particles (r $\sim 10^{-9}$ m) of free DNA nucleotides is $\lambda_{DeBroglie}$ presented. Each collision knocks out 1 atom and creates mutated DNA or DNA breakup. Targets: dAdenosine $(C_{10}O_6N_5H_{13}P)$, dCytodine $(C_9O_7N_3H_{14}P)$ and dThymidine $(C_{10}O_8N_2H_{15})$, differing by 1 O or 1 C atom. We measured highresolution prompt γ spectra of ~ 10⁷ inelastic scatterings of 14 MeV n's: n+O \rightarrow O+n'+ γ (6.128 MeV) and n+C \rightarrow C + n' + γ (4.44 MeV). C or O ejection from 3 DNA's should manifest itself as 3 (2) γ peaks corresponding to 6, 7, 8 O (9, 10 C). We observed 3 O γ peaks containing $8,526\pm400, 10,495\pm402, 11,448$ ± 405 each; and 2 C peaks, as expected; and decoded stoichiometry of 3 DNA's with 3-5 σ in 30', signal/background ~2%. Applications of femto atometry to genometrics, genetic engineering and noninvasive cancer diagnostics will be presented... (maglich@calseco.com)

¹ICBP 7th International Conference on Biological Physics, 2011.

Christian Druey CALSEC California Science & Engineering Corp.

Date submitted: 01 Aug 2011

Electronic form version 1.4