A Microscopic Description of the Elusive Hoyle State

ALISON DREYFUSS, Keene State College, KRISTINA LAUNEY, Louisiana State University, CAIRO BAHRI, University of Notre Dame, TOMAS DYTRYCH, JERRY DRAAYER, Louisiana State University — Using the symplectic $\text{Sp}(3,\mathbb{R})$ symmetry inherent to nuclear dynamics together with a novel many-nucleon interaction, we are able to reproduce low-lying spectral features of ^{12}C, including the Hoyle state energy, and to gain a further understanding of the underlying physics. We employ a no-core symplectic model for symmetry-preserving interactions—with $\text{Sp}(3,\mathbb{R})$ the underpinning symmetry—that offers a microscopic description of nuclei in terms of mixed shape deformations and allows for the inclusion of higher-lying configurations currently inaccessible to ab initio shell models. Our interaction is effectively realized by an exponential dependence on the quadrupole-quadrupole two-body interaction. We were able to reproduce the energies of the ground state rotational band, the Hoyle state, and the next excited 0^+ state, along with the $B(E2 : 2^+_1 \rightarrow 0^+_{\text{stat}})$ transition strength for ^{12}C. The success of this work indicates the importance of alpha-cluster structures in the ^{12}C nucleus and the inclusion of hierarchical many-body interactions.

1Supported by the National Science Foundation (grant #1004822 and OCI-0904874) and the U.S. Department of Energy (DE-SC0005248).

Alison Dreyfuss
Keene State College

Date submitted: 01 Aug 2011
Electronic form version 1.4