Development of CdWO\textsubscript{4} Crystal Detectors1 ALYSSA DAY, University of South Dakota — CdWO\textsubscript{4} scintillators have been proposed for detecting geo-neutrinos, neutrinoless double-beta decay, and dark matter. Initial research involved an energy resolution comparison of three different sized gamma ray detecting CdWO\textsubscript{4} crystals. The three crystals had diameters of 16mm and thicknesses of 5mm, 9mm, and 19mm, respectively. When using the 19mm CdWO\textsubscript{4} crystal, the energy resolution of a 137Cs source resulted in 11.4\% at 662 keV. A 60Co source used with the same crystal resulted in 6.5\% at 1173.2 keV and 8.6\% at 1332.5 keV. As the sizes of the crystal decreased, a slight deterioration in energy resolution occurred with more Compton scattering in the energy spectrum. The CdWO\textsubscript{4} crystal was beneficial when measuring gamma-ray energy close to 511 keV, which is the primary signature for geo-neutrino detection with 106Cd. By initially using a number of smaller crystals, small scale experiments can be run to develop and understand the calibration of these crystals. Current experiments involve using a 2 inch CdWO\textsubscript{4} crystal. It is predicted that with the use of this larger crystal, energy resolution and detection will improve. The results of this experiment will be presented.

1Sponsored by DOE EPSCoR

Alyssa Day
University of South Dakota

Date submitted: 01 Aug 2011