The fusion of ^{11}Li with ^{208}Pb

WALTER LOVELAND, Oregon State University, Corvallis, OR 97331, USA, A.M. VINODKUMAR, Department of Physics, University of Calicut, Kerala, India-673635, R. YANEZ, M. LEONARD, L. YAO, Oregon State University, Corvallis, OR 97331, USA, P. BRICAULT, M. DOMBSKY, P. KUNZ, J. LASSEN, A.C. MORTON, D. OTTEWELL, D. PREDDY, M. TRINCZEK, TRIUMF, Vancouver, British Columbia, V6T 2A3, Canada — We studied the fusion of ^{11}Li with ^{208}Pb at TRIUMF. The intensity of the ^{11}Li beam (chopped) was 1000 p/s and the beam on-target time was 114 hours. The stacked foil technique was used to step the beam energies from 40 to 29 MeV ($E_{c.m.} = 27$-38 MeV) throughout the array. The α-decay of the stopped EVRs was detected in a α-detector array at each beam energy in the beam-off period. The geometrical efficiency of detection of the decay α-particles has been calculated to be 0.4. To verify this, we measured the evaporation residue yield for the well-known $^7\text{Li} + ^{209}\text{Bi}$ reaction. We have previously measured the evaporation residue cross sections when ^9Li, the ^{11}Li core, fuses with ^{208}Pb. We also have done HIVAP calculations of what we might expect for evaporation residue cross sections if ^{11}Li were to fuse with ^{208}Pb rather than breakup. The At isotope patterns observed on-line are not those observed for the $^9\text{Li} + ^{208}\text{Pb}$ reaction but are consistent for expectations of complete fusion.

1This work was supported, in part, by the USDOE, Office of Nuclear Physics, under Grant No. DE-FG06-97ER41026

Walter Loveland
Oregon State University, Corvallis, OR 97331, USA

Date submitted: 26 Jun 2012

Electronic form version 1.4