Abstract Submitted for the DNP12 Meeting of The American Physical Society

Precision Measurement of the Neutron d_2 : A Probe of the Color Force¹ MATTHEW POSIK, Temple University, JEFFERSON LAB E06-014 COL-LABORATION, JEFFERSON LAB HALL A COLLABORATION — The g_2 nucleon spin-dependent structure function measured in electron deep inelastic scattering contains information beyond the simple parton model description of the nucleon. It provides insight into quark-gluon correlations and a path to access the confining local color force a struck quark experiences just as it is hit by the virtual photon due to the remnant di-quark. The quantity d_2 , a measure of this local color force, has its information encoded in an x^2 weighted integral of a linear combination of spin structure functions g_1 and g_2 and is dominated by the valence-quark region at large momentum fraction x. To date, theoretical calculations and experimental measurements of the neutron d_2 differ by about two standard deviations. As a result, JLab experiment E06-014, performed in Hall A, made a precision measurement of this quantity. Double spin asymmetries and absolute cross-sections were measured in both DIS and resonance regions by scattering longitudinally polarize electrons at beam energies of 4.74 and 5.89 GeV from a longitudinally and transversely polarized ³He target. Preliminary results for the absolute cross-sections and spin structure functions on ³He will be presented as well as preliminary results for d_2 on ³He.

¹DE-FG02-94ER40844

Matthew Posik Temple University

Date submitted: 02 Jul 2012

Electronic form version 1.4