Abstract Submitted for the DNP12 Meeting of The American Physical Society

The Nab experiment¹ CHRISTOPHER CRAWFORD, University of Kentucky, NAB COLLABORATION — Neutron decay is a clean semi-leptonic process which depends on the vector G_V and axial-vector G_A coupling constants. The ratio $\lambda = G_A/G_V$, which can be extracted from various correlations in decay products of the neutron, is important for determination of V_{ud} in unitarity tests of the CKM matrix, and to test extensions of the standard model. The goal of the newly funded Nab experiment is to measure the electron-neutrino decay correlation a with a relative uncertainty of 10^{-3} , and the Fierz interference term b with an overall uncertainty of 3×10^{-3} . This experiment uses a new technique to determine the electron-neutrino angle from the energy of the electron and proton, detected in coincidence. We will present the physical design and projected sensitivity of this experiment.

¹This work was supported by NSF award PHY-0855584 and DOE award DE-SC0008107TDD.

Christopher Crawford University of Kentucky

Date submitted: 02 Jul 2012

Electronic form version 1.4