The Nab experiment1 CHRISTOPHER CRAWFORD, University of Kentucky, NAB COLLABORATION — Neutron decay is a clean semi-leptonic process which depends on the vector G_V and axial-vector G_A coupling constants. The ratio $\lambda = G_A/G_V$, which can be extracted from various correlations in decay products of the neutron, is important for determination of V_{ud} in unitarity tests of the CKM matrix, and to test extensions of the standard model. The goal of the newly funded Nab experiment is to measure the electron-neutrino decay correlation a with a relative uncertainty of 10^{-3}, and the Fierz interference term b with an overall uncertainty of 3×10^{-3}. This experiment uses a new technique to determine the electron-neutrino angle from the energy of the electron and proton, detected in coincidence. We will present the physical design and projected sensitivity of this experiment.

1This work was supported by NSF award PHY-0855584 and DOE award DE-SC0008107TDD.