Abstract Submitted for the DNP12 Meeting of The American Physical Society

Overview on the UCNtau experiment DANIEL SALVAT, Indiana University, UCNTAU COLLABORATION — The UCN τ experiment is a precision measurement of the neutron beta-decay lifetime using ultracold neutrons (UCN) in a magneto-gravitational trap. Due to its long beta-decay lifetime (880.1 \pm 1.1 s, PDG2012), neutrons are also susceptible to many other loss mechanisms, such as upscatterings, absorptions on material surface, and spin flips. These interactions could act on similar time-scale as the neutron beta-decay, making precision experimental measurements very challenging. In this talk, we will describe a new effort at Los Alamos National Laboratory to measure the beta-decay lifetime using ultracold neutrons trapped in a hybrid magnetic and gravitational trap. A Halbach array is used to levitate UCN (up to 50 neV), which are confined vertically up to 0.5 m by gravity. Such a trap minimizes the chance of neutron interactions with material walls, and furthermore its open-top geometry allows implementations of novel schemes to detect neutrons and decay particles in-situ. The experiment aims to improve on the uncertainty of the neutron lifetime measurement beyond 1 second. In this talk, we will describe the design features and discuss plans to quantify systematic effects.

> Chen-Yu Liu Indiana University

Date submitted: 10 Sep 2012

Electronic form version 1.4