Band Structures and Nucleon Alignments in 173,175W C.J. GUESS, S.K. TANDEL1, P. CHOWDHURY, U. SHIRWADKAR, Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA, M.P. CARPENTER, R.V.F. JANSSENS, T.L. KUOO, T. LAURITSEN, C.J. LISTER, D. SEWERY-NIAK, X. WANG, S. ZHU, Argonne National Laboratory, Argonne, IL 60439, USA, D.J. HARTLEY, Department of Physics, U.S. Naval Academy, Annapolis, MD 21402, USA — Spectroscopic study of nuclei in the A~180 region is essential to better understand regional relationships between Nilsson orbitals. Highly excited rotational states in both nuclei were populated at Argonne National Laboratory via a 230 MeV 50Ti beam from the ATLAS accelerator incident on a 128Te target. The Gammasphere array was used to detect γ decays from excited states. Rotational bands built on the level 1/2$^-$[521], p$^{3/2}$ in 173,175W have been extended to spins of 40 and 35\hbar respectively, and bands built on the 7/2$^+$[633], i$^{13/2}$ configuration extended to 38 and 27\hbar respectively. New sidebands in 173W have been observed in all previously-discovered bands. Alignments from i$^{13/2}$ neutron and h$^{11/2}$ proton crossings are consistent with predictions of Woods-Saxon cranking calculations. Experimental results and regional systematics will be presented.

1Now at the UM-DAE Centre for Excellence in Basic Sciences, Vidyanagari, Mumbai 400098 India