Abstract Submitted for the DNP12 Meeting of The American Physical Society

Measurement of the ${}^{26g}Al(d,p){}^{27}Al$ Reaction to Constrain the ²⁶gAl Destruction Reaction Rate STEVEN PAIN, ORNL, ORRUBA/RIBENS COLLABORATION — Detailed observations of the 1809-keV γ ray from the beta decay of ²⁶Al within the galaxy has provided an insight into ongoing nucleosynthesis. Understanding the abundance of ²⁶Al requires knowledge of the production and destruction rates for ²⁶Al. For temperatures where the ground-state and metastable state of ²⁶Al are decoupled, the ²⁶Al(p,γ)²⁷Si reaction, which is determined by states near the proton threshold in ²⁷Si, contributes to the destruction rate. Though the strengths of many of these resonances have been measured directly, there remain uncertainties for the lowest resonances, which are relevant for giant star temperatures. We have measured mirror states in ²⁷Al to inform the ²⁷Si structure, via the 26 Al(d,p)²⁷Al reaction in inverse kinematics at the HRIBF. A beam of ~ 5 million ²⁶Al per second impinged on a ~150 $\mu g/cm^2$ CD₂ target. Proton ejectiles were detected in the SIDAR and ORRUBA silicon detector arrays. Details of the experimental setup and results will be presented. This work was supported in part by the US Department of Energy Office of Science and the National Science Foundation.

> Steven Pain ORNL

Date submitted: 02 Jul 2012

Electronic form version 1.4