Studies in the Big Bang Nucleosynthesis of Lithium Isotopes

GRANT MATHEWS, UND, TOSHITAKA KAJINO, NAOJ, MOTOHIKO KUSAKABE, Tokyo U. — There has been a lingering puzzle in that the ^6Li abundance observed in metal poor halo stars appears to exhibit a plateau as a function of metallicity similar to that for ^7Li. This suggests a possible big bang origin for ^6Li. However, because the radiative capture of a deuteron by and alpha particle during the big bang is suppressed, it is difficult to explain this observed ^6Li abundance. At the same time the observed ^7Li abundance is below that expected from BBN. In this talk we summarize a variety of approaches by which we have attempted to explain this observation. Among the possibilities are uncertainties in the stellar astrophysics of lithium isotope detection, galactic chemical evolution, effects from a massive charged or uncharged unstable relic supersymmetric particle present during BBN, or a time variation of fundamental constants. We show that it is possible, but difficult, to obtain a simultaneous solution to both the problems of underproduction of ^6Li and overproduction of ^7Li in a single paradigm.

1Work at the University of Notre Dame supported by the US Department of Energy under Nuclear Theory grant DE-FG02-95ER40934.