Abstract Submitted for the DNP12 Meeting of The American Physical Society

Measurements of the g-factors of the $\mathbf{2}_{1}^{+}$ states in $^{82}\mathbf{Sr}$ (25.3 d) and ^{90}Sr (28.8 y)¹ SAMANTHA RICE, SAMUEL NAIMARK, GERFRIED KUM-BARTZKI, NOEMIE BENCZER-KOLLER, Rutgers University — Magnetic moments and lifetimes of the 2_1^+ states in $^{84-88}$ Sr isotopes were measured via the transient field technique and Coulomb excitation in inverse kinematics. The pending experiment will use $^{78,86}\mathrm{Kr}$ beams from the TAMU Cyclotron to induce α -capture reactions on a ¹²C target and produce the unstable isotopes of interest, ^{82,90}Sr. A new beam line, consisting of a target chamber, target cooling device, and external magnetic field, is being assembled at Rutgers. The ¹²C target was evaporated on a substrate of gadolinium backed by a copper foil. A PIPS Si detector will detect α particles exiting the target after the ⁸Be breakup, and γ -rays will be detected by four Ge clover detectors. A digital data acquisition system will record α - γ coincidences. The angular correlation of the emitted γ -rays with respect to the beam direction will be determined from appropriate combinations of γ -ray intensities observed in various elements of the clover detectors. The measurement of the precession angles of the 2_1^+ magnetic moments yield the experimental g-factors. The results will be compared to shell model calculations based on ⁸⁸Sr as a core nucleus.

¹This work was supported in part by the National Science Foundation.

Samantha Rice Rutgers University

Date submitted: 24 Jul 2012 Electronic form version 1.4