Abstract Submitted for the DNP12 Meeting of The American Physical Society

Experimental System to Study the α Decay of $^{178}\text{Hf}^{m2}$ K.A. NETHERTON, Drexel University, J.J. CARROLL, M.S. LITZ, US Army Research Laboratory, S.A. KARAMIAN, Joint Institute for Nuclear Research — The nuclide ¹⁷⁸Hf possesses a second isomer that is notable in its spin ($I^{\pi} = 16^+$), lifetime $(T_{1/2} = 31 \text{ years})$ and excitation energy $(E_m = 2.446 \text{ MeV})$. It is this high excitation energy that permits α decay of the nucleus from the isomeric state, although the ¹⁷⁸Hf nuclide is stable in its ground state. The α decay was detected (PRC 75, 057301, 2007) through the use of a track detector and the associated half-life was deduced to be $(2.5 + 0.5) \times 10^{10}$ years, compared with the previously-known halflife for IT decay of 31 years. The most probable decay sequence was predicted to be α decay with $E_{\alpha} = 3.91$ MeV to the $I^{\pi} = 6^+$ member of the ¹⁷⁴Yb ground-state band. However, so far no spectroscopic study of this rare decay has been performed. An experimental system to accomplish this has been constructed using a silicon surface barrier (SSB) charged-particle detector and a high purity Germanium (HPGe) γ detector, with the aim of recording both α decays and $\alpha - \gamma$ coincidences. The experimental design, instrumentation and preliminary testing will be discussed.

> Katrijn Netherton Drexel University

Date submitted: 27 Jul 2012

Electronic form version 1.4