Alpha-decay of exited states in 12C

JUAN MANFREDI, ROBERT CHARITY, KEVIN MERCURIO, REBECCA SHANE, LEE SOBOTKA, Washington University in St. Louis, ALAN WUOSMAA, Western Michigan University, ADRIANA BANU, LIVIUS TRACHE, ROBERT TRIBBLE, Texas A&M University, SOBOTKA/CHARITY LAB TEAM — Recently it was suggested that the state in 12C at an excitation energy of 7.65 MeV ($J^\pi = 0^+$), the Hoyle state, can decay via a mechanism that produces three α-particles of almost equal energy. High-resolution triple-α coincidence data were used to reconstruct the decay of the excited states in 12C at 7.65 MeV ($J^\pi = 0^+$) and 9.64 MeV ($J^\pi = 3^-$). These data were gathered at the Texas A&M University K500 cyclotron facility, where a 10C beam impinged on a Be target and reaction products were detected using four Si $E - \Delta E$ detectors. The results of this experiment are consistent with the α-particle decay of both levels proceeding exclusively through $^8Be_{g.s.}$. In the first of these cases, the Hoyle state, upper limits of 0.45% and 3.9% (at the 99.75% confidence level) are set for an equal-energy α-particle decay process and a process uniformly spanning three-body phase space (respectively). The limit for the equal-energy α-particle decay is much lower than claimed in the previous result.

1Supported by the Department of Energy, Division of Nuclear Physics