Abstract Submitted for the DNP12 Meeting of The American Physical Society

Uncertainties in production of stellar 26Al¹ RONALDO ORTEZ, University of Washington (Seattle), CHRISTOPHER WREDE, MICHEAL BEN-NET, MARCO SANTIA, ALICE BOWE, Michigan State University — While most of ²⁶Al content is believed to be produced in supernovae, as much as 20% may come from novae whose favorable energies enable the precise study of the production mechanism of ²⁶Al in novae. This study achieves greater importance because ²⁶Al is one of the critical isotopes that governs the path by which nucleosynthesis takes to heavier species and would also indirectly constrain the ²⁶Al content produced by supernovae thereby impacting the ratio of stellar ²⁶Al/⁶⁰Fe, an important benchmark in supernovae nucleosynthesis. Despite significant progress on the subject there remains large uncertainties in one of the competing ²⁶Al production channels which relies on the 25 Al(p, γ) 26 Si transition. This uncertainty is primarily characterized by the undetermined energy of the excited 3⁺ ²⁶Si state which decays to the ground state of ²⁵Al+p. To determine the resonance strength and energy of this transition an experiment is planned at the NSCL, which populates ²⁶Si through the beta decay of ²⁶P. Using an array of Ge clover detectors to measure the energies of the beta-delayed photons and their intensities, one could then determine Γ_{γ} , which then allows the calculation of the resonance strength (since Γ_p is known), completing the decay scheme of the ${}^{25}\text{Al}(p,\gamma){}^{26}\text{Si}$ transition.

¹This project was funded by the REU grant US-NSF PHY-1062410.

Ronaldo Ortez University of Washington (Seattle)

Date submitted: 03 Aug 2012 Electronic form version 1.4