Abstract Submitted for the DNP12 Meeting of The American Physical Society

Composition of the ²⁴O Ground State Wave Function¹ R.A. SCOT-TEN, Fullerton College, E. TRAYNOR, P.A. DEYOUNG, Hope College, N.T. IS-LAM, R.A. HARING-KAYE, Ohio Wesleyan University, THE MONA COLLABO-RATION — Recent experimental and theoretical evidence points to a closed shell at N = 16 for the neutron-rich oxygen isotopes based on the measured and predicted excitation energy of the first-excited 2^+ state in ${}^{24}O$ and the energy gap between the $\nu(0d_{3/2})$ and $\nu(1s_{1/2})$ single-particle states. This work seeks to test this assertion by measuring the cross section for neutron knockout from the ²⁴O ground state to the ground and first-excited states of ²³O (which immediately decays to the ground state of ²²O through neutron emission). From this we can infer the composition of the ²⁴O ground state wave function. ²⁴O nuclei were produced at the National Superconducting Cyclotron Lab (NSCL) at Michigan State University via fragmentation of a 48 Ca beam on a 1316 mg/cm² Be target, and bombarded a 481 mg/cm² Be target downstream to induce knockout reactions. Fragment nuclei (neutron decays) were detected by a system of charged-particle detectors (the Modular Neutron Array (MoNA)). The current status of the analysis will be discussed, including the identification of oxygen fragments, the calibrations for timing and position measurements using MoNA, and the determination of the relevant spectroscopic factors of interest.

¹This work was supported by the U.S. National Science Foundation.

Richard Scotten Fullerton College

Date submitted: 03 Aug 2012

Electronic form version 1.4