Abstract Submitted for the DNP13 Meeting of The American Physical Society

Meson Production off the Deuteron¹ IGOR STRAKOVSKY, WILLIAM BRISCOE, DIANE SCHOTT, RONALD WORKMAN, The George Washington University — An accurate evaluation of the electromagnetic couplings $N^*(\Delta^*) \rightarrow \gamma N$ from meson photoproduction data remains a paramount task in hadron physics. Here we focus on the single-pion production data and note that a complete solution requires couplings from both charged and neutral resonances, the latter requiring $\pi^- p$ and $\pi^0 n$ photoproduction off a neutron target (where the neutron is bound in the deuteron.) Experimental data for neutron-target photoreactions are much less abundant than those utilizing a proton target, constituting only about 15% of the present World database. As a result, our knowledge of the neutral resonance couplings is less precise as compared to the charged values. Extraction of the two-body ($\gamma n \rightarrow \pi^- p$ and $\gamma n \rightarrow \pi^0 n$) cross sections requires the use of a model-dependent nuclear correction, which mainly comes from final-state interactions (FSI). We recently applied our FSI corrections to CLAS $\gamma d \rightarrow \pi^- pp$ data to get elementary cross sections for $\gamma n \to \pi^- p$ for a broad energy range, $E_{\gamma} > 1$ GeV. Then, we did the same for a MAMI-B GDH experiment to get $\gamma n \rightarrow \pi^- p$ about the Δ -isobar.

¹This work was supported in part by the U.S. Department of Energy Grant No. DE-FG02-99ER41110.

Igor Strakovsky The George Washington University

Date submitted: 22 Jun 2013

Electronic form version 1.4