Abstract Submitted for the DNP13 Meeting of The American Physical Society

Pion Polarizability at CERN COMPASS MURRAY MOINESTER, Tel Aviv University, CERN COMPASS COLLABORATION — The electric α_{π} and magnetic β_{π} charged pion Compton polarizabilities provide stringent tests of Chiral Perturbation Theory. The combination $(\alpha_{\pi}-\beta_{\pi})$ was measured at CERN COMPASS via radiative pion Primakoff scattering (Bremsstrahlung of 190 GeV/c π -s) in the nuclear Coulomb field: $\pi + Z \rightarrow \pi + \gamma + Z$. This reaction is identified experimentally by virtue of the very small momentum transfer to the target nucleus; and is equivalent to $\gamma + \pi \rightarrow \gamma + \pi$ Compton scattering for laboratory γ 's of order 1 GeV/c incident on a target pion at rest. COMPASS data analysis (assuming $\alpha_{\pi} + \beta_{\pi} = 0$ based on theory) gives a preliminary value of $\alpha_{\pi} = -\beta_{\pi} = (1.9 \pm 0.7_{\text{stat.}} \pm 0.8_{\text{syst.}}) \times 10^{-4} \text{ fm}^3$.

> Murray Moinester Tel Aviv University

Date submitted: 24 Jun 2013

Electronic form version 1.4