Coulomb distorted nuclear matrix elements in momentum space: I. Formal aspects

N. J. UPADHYAY, NSCL, Michigan State University, MI, V. EREMEMKO, INPP, Ohio University, OH; SINP, Lomonosov Moscow State Univ. Moscow, Russia, F.M. NUNES, NSCL, Michigan State University, MI, CH. ELSTER, INPP, Ohio University, OH, TORUS COLLABORATION

(d,p) reactions are an important tool to reveal nuclear structure. In order to treat elastic scattering, transfer and breakup reactions on the same footing, it is advantageous to view the a (d,p) reaction as a three-body problem p+n+A within a Faddeev framework. A screening and renormalization technique for including the Coulomb interaction has been used in pioneering a Faddeev approach in (d,p) reactions for light nuclei [1]. It turns out that this procedure is not suited for reaction with heavy nuclei, since it becomes numerically unstable [2]. Therefore a new approach has been suggested by Mukhamedzhanov [3] by formulating the Faddeev equations in a Coulomb basis instead of plane wave basis. In order to test the feasibility of this approach we calculate as first step Coulomb distorted nuclear matrix elements for a variety of nuclei (including 208Pb) for partial waves from l=0 to l=20. Insights and techniques for this will be presented.


1This work is done within the TORUS collaboration and supported by the U.S. Department of Energy.
2http://www.reactiontheory.org/

N. J. Upadhyay
NSCL, Michigan State University, MI

Date submitted: 24 Jun 2013