Abstract Submitted for the DNP13 Meeting of The American Physical Society

Measurement of the ${}^{3}\text{H}(d,\gamma)/{}^{3}\text{H}(d,n)$ Branching Ratio at Centerof-Mass Energies Below 300 keV¹ CODY PARKER, CARL BRUNE, THOMAS MASSEY, DANIEL SAYRE², JOHN O'DONNELL, Ohio University — The branching ratio ${}^{3}\text{H}(d,\gamma){}^{5}\text{He}/{}^{3}\text{H}(d,n)\alpha$ has been measured using a 500-keV pulsed deuteron beam incident on a stopping titanium tritide target at the Edwards Accelerator Laboratory. The time-of-flight technique has been used to distinguish the γ -rays from the neutrons in the bismuth germinate γ -ray detector. Two stilbene scintillators and an NE-213 scintillator have been used to detect the neutrons using both the pulseshape discrimination and time-of-flight techniques. The preliminary measurement at a cross-section-weighted average energy of 196 keV that produced a branching ratio measurement of $(6.9\pm1.6)\times10^{-5}$ and plans for future measurements will be presented.

¹This work is supported in part by Lawrence Livermore National Laboratory, the U.S. Department of Energy, and the National Nuclear Security Administration through grant No. DE-NA0001837.

²presently at Lawrence Livermore National Laboratory

Cody Parker Ohio University

Date submitted: 25 Jun 2013

Electronic form version 1.4