Abstract Submitted for the DNP13 Meeting of The American Physical Society

Probing the structure of 130 Xe and 136 Xe with inelastic neutron scattering T.J. ROSS, A. CHAKRABORTY, B.P. CRIDER, A. KUMAR, M.T. MCELLISTREM, E.E. PETERS, F.M. PRADOS-ESTEVEZ, S.W. YATES, Departments of Chemistry and Physics & Astronomy, University of Kentucky, Lexington, KY 40506, J.R. VANHOY, Department of Physics, United States Naval Academy, Annapolis, MD 21402 — Xenon isotopes in the vicinity of A = 130 provide an opportunity to study the transition in nuclear character from γ soft to vibrational. Although these even-mass Xe isotopes are stable, they prove difficult to investigate directly due to their gaseous nature and thus remain relatively lightly studied. To shed new light on the low-lying structure of these isotopes, experiments have been performed at the University of Kentucky where samples of solid ¹³⁰XeF₂ and 136 XeF₂ were excited via the (n,n' γ) reaction. Excitation function measurements (between 1.8 and 3.3 MeV) allow the placement of new levels and transitions and provide information about the J^{π} of levels. Gamma-ray angular distribution data allow the determination of transition multipolarities, γ -ray branching ratios, and level lifetimes (using DSAM techniques). We will present new information concerning the low-spin structure of these transitional nuclei. This material is based upon work supported by the U.S. National Science Foundation under grant no. PHY-0956310.

> T.J. Ross Departments of Chemistry and Physics & Astronomy, University of Kentucky, Lexington, KY 40506

Date submitted: 28 Jun 2013

Electronic form version 1.4