Abstract Submitted for the DNP13 Meeting of The American Physical Society

Baryons at Varying Nc: a study with Lattice QCD and Effective Theory¹ JOSE GOITY², Hampton University and Jefferson Lab, ALVARO CALLE CORDON³, Jefferson Lab, THOMAS DEGRAND⁴, University of Colorado — Recent Lattice QCD (LQCD) calculations of baryon masses with the number of colors $N_c = 3$, 5 and 7 [1] have opened the opportunity for exploring quantitatively the $1/N_c$ expansion of QCD in the baryon sector. While similar studies have been carried out for glueballs and mesons, which show a remarkably well behaved $1/N_c$ expansion down to the real world's $N_c = 3$, the results in [1] are the first ones of their kind. The calculations were performed in quenched LQCD and with quark masses giving $M_{\pi} > 400$ MeV. The results are analyzed using an Effective Theory based on the combination of Baryon Chiral Perturbation Theory and the $1/N_c$ expansion [2]. A detailed discussion of the analysis and its implications will be presented, along the lines of a current work in progress [3].

- [1] T. DeGrand, Phys. Rev. D 86, 034508
- [2] A. Calle Cordon and J. L. Goity, Phys. Rev. D87, 016019
- [3] A. Calle Cordon, T. DeGrand and J. L. Goity, work in progress.

Jose Goity Hampton University and Jefferson Lab

Date submitted: 28 Jun 2013 Electronic form version 1.4

¹Work supported by DOE Contract No. DEAC05- 06OR23177 under which JSA operates the Thomas Jefferson National Accelerator Facility, by DOE grant DE-FG02-04ER41290, and by NSF grants PHY-0855789 and PHY-1307413

²Department of Physics, Hampton University, Hampton, VA 23668, and Theory Center, Jefferson Lab, Newport News, VA 23606

³Theory Center, Jefferson Lab, Newport News, VA 23606

⁴Department of Physics, University of Colorado, Boulder, CO 80309