Abstract Submitted for the DNP13 Meeting of The American Physical Society

Universality of Hadronization Condition at RHIC and LHC¹ MICHAL PETRAN, JOHANN RAFELSKI, University of Arizona — The hadronization analysis within non-equilibrium SHM has shown that across RHIC and LHC energy range, and across a wide range of centrality we find a universal intensive hadronization conditions of the particle source: pressure $P_h \simeq 80 \text{MeV}/\text{fm}^3$, energy density $\varepsilon_h \simeq 0.5 \text{GeV}/\text{fm}^3$ and entropy density $\sigma_h \simeq 3.3 \text{fm}^{-3}$. The parameters varying as a function of reaction energy and/or centrality are source volume dV/dyand strangeness saturation γ_s . This discovery allows to simplify the SHM approach: the principle of Universal Hadronization reduces the number of parameters within the non-equilibrium SHM. Two suffice at LHC and three are enough at RHIC to fully characterize all hadron production. We show this using the SHARE program: we prescribe the intensive properties of the fireball, and fit at LHC dV/dy, γ_s as a function of centrality, while at RHIC we must also introduce baryon-antibaryon asymmetry μ_B , where μ_S is fixed by $\langle s \rangle = \langle \bar{s} \rangle$. The other SHM parameters e.g. T, γ_a , are an output of this procedure, which works for all hadrons. The convergence for the most central collisions of $s/S \rightarrow 0.03$ confirms strangeness chemical equilibration in the deconfined QGP fireball hadron source.

¹Supported by U.S. Department of Energy grant DE-FG02-04ER41318.

Johann Rafelski University of Arizona

Date submitted: 29 Jun 2013

Electronic form version 1.4