Abstract Submitted for the DNP13 Meeting of The American Physical Society

Measurement of astrophysically important excitation energies of ⁵⁸Zn with GRETINA CHRISTOPH LANGER, JINA/NSCL, E11024 COLLAB-ORATION — The level structure of proton-rich ⁵⁸Zn has been measured with the next-generation γ -ray tracking array GRETINA in conjunction with the largeacceptance spectrometer S800 at the National Superconducting Cyclotron Laboratory at MSU. ⁵⁸Zn is expected to play an important role in the rapid proton capture process (rp process) during Type I X-ray bursts. ⁵⁸Zn is located in the vicinity of doubly-magic ⁵⁶Ni, which is a waiting point for further processing in the rp process. The reaction ⁵⁷Cu(p, γ)⁵⁸Zn determines the effective lifetime of ⁵⁶Ni since the electron-capture lifetime of ⁵⁶Ni is larger than 1000 s and ⁵⁶Ni is in (p, γ) - (γ ,p) equilibrium with ⁵⁷Cu at typical rp-process temperatures. Proton capture on ⁵⁷Cu is the only open break-out reaction channel within typical burst timescales. So far, the ⁵⁷Cu(p, γ) rate has large uncertainties due to the unknown level structure of ⁵⁸Zn. This presentation will focus on the details of the study and present the extracted level scheme of ⁵⁸Zn. Moreover, the astrophysical implications will be discussed.

> Christoph Langer JINA/NSCL

Date submitted: 29 Jun 2013

Electronic form version 1.4