Abstract Submitted for the DNP13 Meeting of The American Physical Society

²⁶Al,³⁰P(d,n) transfer reaction studies of key hydrogen burning resonances relevant for cosmic γ -ray emission and heavy element production in novae ANU KANKAINEN, PHIL WOODS, University of Edinburgh. E12010 COLLABORATION — 26 Al(d,n) 27 Si and 30 P(d,n) 31 S transfer reactions have been studied in inverse kinematics to study key astrophysical resonances in 27 Si and 31 S. These are relevant for abundance calculations of the cosmic γ -ray emitter ²⁶Al, and for the abundances of heavy elements (e.g. silicon), highly dependent on the ${}^{30}P(p,\gamma){}^{31}S$ reaction, observed in novae ejecta. A primary beam of $^{36}\mathrm{Ar}$ (150 MeV/A) impinging on a Be target produced around 30 MeV/u beams of ²⁶Al and ³⁰P which bombarded a 10 mg cm⁻²-thick CD₂ target (CH₂ for background). The ${}^{27}\text{Si}/{}^{31}\text{S}$ ions were analyzed by the S800 spectrometer and identified by energy loss and time-of-flight measurements. γ rays from the decays of excited states in ²⁷Si/³¹S were detected in coincidence with the recoiling ²⁷Si/³¹S ions using GRETINA. By measuring the number of coincident events, and correcting for the angular distributions of the γ rays, this provides an angle integrated measurement of the (d, n) cross-sections, and a measure of the proton partial widths for the key astrophysical resonances in ²⁷Si and ³¹S.

> Phil Woods pjw@ph.ed.ac.uk

Date submitted: 29 Jun 2013

Electronic form version 1.4