Abstract Submitted for the DNP13 Meeting of The American Physical Society

Shape coexistence in ⁶⁸Ni S. SUCHYTA, S. LIDDICK, M. BENNET, N. LARSON, C. PROKOP, S. QUINN, A. SPYROU, MSU/NSCL, A. CHEMEY, A. SIMON, NSCL, T. OTSUKA, MSU/NSCL/CNS/U of T, Y. TSUNODA, U of T, N. SHIMIZU, CNS/U of T, M. HONMA, CMS/U of A, Y. UTSUNO, JAEA, V. TRIPATH, J. VONMOSS, $FSU - {}^{68}Ni$ has been a focus of recent work aiming to understand the apparent rapid development of collectivity along neutron-rich N = 40 nuclei, but despite many studies, is not entirely understood. The decay of the first excited 0^+ state in 68 Ni was investigated at the NSCL. Ions of 68 Co were implanted into a planar germanium double-sided strip detector (GeDSSD). The beta decay of 68 Co populated the first excited 0^+ state in 68 Ni and within hundreds of nanoseconds the decay of the first excited 0^+ state was measured in the GeDSSD. Both the energy of the first excited 0^+ state and the electric monopole transition strength from the first excited 0^+ state were precisely determined. Comparisons to Monte Carlo Shell Model calculations suggest shape coexistence between spherical ground and oblate first excited 0^+ states in 68 Ni. The experimental results and theoretical interpretation will be presented.

> Scott Suchyta MSU/NSCL

Date submitted: 30 Jun 2013

Electronic form version 1.4