Abstract Submitted for the DNP13 Meeting of The American Physical Society

 $0\nu\beta\beta$ -decay of ⁴⁸Ca in the shell model¹ ROMAN SENKOV, MIHAI HOROI, Central Michigan University — We discuss neutrinoless double beta $(0\nu\beta\beta)$ decay of ⁴⁸Ca and test the closure approximation, a widely used approach for $0\nu\beta\beta$ nuclear matrix element calculations. In the shell model framework we calculate $0\nu\beta\beta$ nuclear matrix element of ⁴⁸Ca using both closure approximations and the nonclosure approach, and we estimate the uncertainties associated with the closure approximation. We also demonstrate that the nonclosure approach can be used to calculate $0\nu\beta\beta$ decay rates of heavy nuclei, such ⁷²Ge or ⁸²Se, thus avoiding unmanageable computational costs.

¹The NUCLEI SciDAC collaboration under the DOE grant No. DE-SC0008529 is acknowledged.

Roman Senkov Central Michigan University

Date submitted: 30 Jun 2013

Electronic form version 1.4