Abstract Submitted for the DNP13 Meeting of The American Physical Society

Two-Neutron Decay from the Ground State of $^{26}O^1$ HARSHA ATTANAYAKE, PAUL KING, CARL BRUNE, DILUPAMA DIVARATNE, Ohio University, MONA COLLABORATION — The study of ^{26}O is important to understand the behavior and properties of neutron-rich heavy oxygen isotopes. Recent experiments have indicated that ^{24}O is bound and the tests have failed to find bound states of ^{25}O and ^{26}O . Unstable ^{26}O decays to stable ^{24}O by emitting two neutrons ($^{26}O\rightarrow^{24}O+2n$) rather than decaying via ^{25}O , which is neutron unbound with a 1n separation energy of 770 keV. An investigation of ^{26}O was conducted at the National Superconducting Cyclotron Laboratory, which possesses the capability to produce rare isotope beams and detect neutrons with an efficiency of about 70% with the MoNA detector. Production of ^{26}O was done by one-proton removal from a ^{27}F beam with an energy of 82 MeV/u impending on a 705 mg/cm² Be target. Coincidence of the two neutrons with ^{24}O was measured for four-vector momentum event reconstruction, allowing extraction of the invariant mass of ^{26}O .

 $^1\mathrm{MoNA}$ Collaboration and INPP-Ohio University

Harsha Attanayake Ohio University

Date submitted: 30 Jun 2013 Electronic form version 1.4