Abstract Submitted
for the DNP13 Meeting of
The American Physical Society

Quest for Neutrinoless Double Beta Decay of 130Te with the CUORE Detector THOMAS O’DONNELL, Physics Department, University of California Berkeley and Nuclear Science Division, Lawrence Berkeley National Lab, CUORE COLLABORATION — The CUORE experiment, in the advanced stages of construction at Laboratori Nazionali del Gran Sasso (LNGS), aims to search for $0
\nu \beta \beta$ decay of 130Te with unprecedented sensitivity: $T_{1/2}^{0\nu} = 9.5 \times 10^{25}$ yr at 90\% C.L. The detector will consist of 19 towers, each comprising 13 planes of four, 125 cm3, cubic TeO$_2$ crystals. This amounts to a total mass of 206 kg of 130Te. When cooled to an operating temperature of ~ 10 mK such crystals function as highly sensitive bolometers with energy resolution better than 5 keV demonstrated near the $0\nu \beta \beta$ decay Q-value (2527.518 \pm 0.013 keV). In this talk I will describe the expected reach of CUORE considering the rigorous cleaning, materials handling, and ultra-pure assembly techniques developed by the collaboration. I will also report on the status of CUORE-0, a single CUORE-like tower where many of these background mitigation techniques were deployed during assembly. CUORE-0 represents a new $0\nu \beta \beta$ experiment which is already operating at LNGS and will surpass the sensitivity of the previous generation experiment (Cuoricino) before CUORE begins operating.

Thomas O’Donnell
Physics Department, University of California Berkeley and Nuclear Science Division, Lawrence Berkeley National Lab

Date submitted: 01 Jul 2013