Abstract Submitted
for the DNP13 Meeting of
The American Physical Society

Neutron-Induced Fission Cross Sections for Uranium-238 Above 100 MeV
ZACHARIAH MILLER, MICHAEL KOVASH, Dept. of Physics, Univ. of Kentucky — The cross section for neutron-induced fission of 238U is not well known above 100 MeV; only a few published measurements exist between 100 and 300 MeV. We report here new cross section data which span the range from 100 to over 200 MeV. A white neutron beam produced at the LANSCE/WNR facility was incident both on a thin transmission fission chamber, and subsequently on a liquid hydrogen target. Data were simultaneously collected from fission-fragment triggers in the chamber, as well as from n-p elastic scattering events from the cryogenic target. The fragment time spectrum was used to determine the energy of the initiating neutron, while an ADC spectrum from the chamber allowed for a clean separation of alpha-particle backgrounds. Elastic n-p triggers were derived from a coincidence between scattered neutrons and the recoil protons, detected in a plastic-CsI telescope whose time spectrum was used to determine the incident neutron energy. The cross section for n-p scattering is well known, and is used to normalize the fission yields at beam energies above 100 MeV. The new fission cross section data are compared with previous measurements.

Michael Kovash
Dept. of Physics, Univ. of Kentucky

Date submitted: 01 Jul 2013
Electronic form version 1.4