Abstract Submitted for the DNP13 Meeting of The American Physical Society

Search for the isovector monopole resonance via the ²⁸Si(¹⁰Be, ¹⁰B+ γ)²⁸Al reaction¹ MICHAEL SCOTT, MSU physics / NSCL, FOR THE E11021 COLLABORATION TEAM — The isovector giant monopole resonance (IVGMR) is a fundamental mode of collective oscillation in which the neutron and proton fluids in a nucleus radially expand and contract in an out-ofphase manner. Observation of the IVGMR has been difficult due to the lack of a probe that will excite only its non-spin-flip ($\Delta S = 0$) transitions. The IVGMR's spin-transfer ($\Delta S = 1$) counterpart, the isovector spin giant monopole resonance, is much more strongly excited at bombarding energies higher than 60 MeV/u. By way of the $({}^{10}\text{Be}, {}^{10}\text{B}+\gamma)$ charge-exchange reaction, the selectivity for the excitation of the IVGMR can be gained. In this probe, the superallowed Fermi transition $^{10}\text{Be}(0^+,\text{g.s.}) \rightarrow ^{10}\text{B}(0^+_1, 1.74 \text{ MeV}, T = 1)$ allows a nearly pure isolation of the $\Delta S = 0$ component by detecting the 1022 keV gamma rays from the deexcitation of the ¹⁰B. We measured the double differential cross sections for the ${}^{28}\text{Si}({}^{10}\text{Be}, {}^{10}\text{B}+\gamma)$ reaction at 100 MeV/u using the large acceptance S800 Spectrometer at the National Superconducting Cyclotron Laboratory with the GRETINA array detecting the gamma rays emitted from the ¹⁰B ejectile. In this presentation, we will report preliminary reults of the IVGMR in 28 Al.

¹GRETINA was funded by the US DOE - Office of Science. Operation of the array at NSCL is supported by NSF under Cooperative Agreement PHY-1102511(NSCL) and DOE under grant DE-AC02-05CH11231(LBNL).

Michael Scott MSU physics / NSCL

Date submitted: 01 Jul 2013

Electronic form version 1.4