Study of the $^{15}\text{C}(d, ^3\text{He})^{14}\text{B}$ Reaction

S. BEDOOR, A.H. WUOSMAA, J.C. LIGHTHALL, S.T. MARLEY, D.V. SHETTY, Western Michigan University, M. ALBERS, M. ALCORTA, S. ALMARAZ-CALDERON, B.B. BACK, C.R. HOFFMAN, R.C. PARDO, K.E. REHM, Argonne National Laboratory, P.F. BERTONE, Louisiana State University — We have studied the ^{14}B nucleus employing the $^{15}\text{C}(d, ^3\text{He})^{14}\text{B}$ reaction in inverse kinematics using HELIOS (the HELical Orbit Spectrometer) at the ATLAS facility at ANL. A ^{15}C beam was produced using the In-Flight method. The ^3He particles were detected with HELIOS. The recoiling $^{13}, ^{14}\text{B}$ nuclei were identified in a set of silicon ΔE–E telescope, distinguishing bound and unbound states in ^{14}B. From a previous study of the $^{13}\text{B}(d, p)^{14}\text{B}$ reaction the $(2_1^-, 1_1^-)$ states were found to be admixtures of $\ell = 0$ and $\ell = 2$ made up of $\pi(0p_{3/2})^{-1} - \nu(1s_{1/2})$ and $\pi(0p_{3/2})^{-1} - \nu(0d_{5/2})$ configurations. The $(2_2^-, 1_2^-)$ excited states were not observed. A complementary reaction can identify the $(2_2^-, 1_2^-)$ states in order to track the single particle strength in ^{14}B. In the current study, proton removal from ^{15}C explores only the $\pi(0p_{3/2})^{-1} - \nu(1s_{1/2})$ component of states in ^{14}B. The results provide a determination of 2_2^- energy level and better constrain the $1s_{1/2}$ and $0d_{5/2}$ effective single–particle energies in ^{14}B.

1Work supported by the U. S. Department of Energy, Office of Nuclear Physics, under Contracts DE-FG02-04ER41320 and DE-AC02-06CH11357.

Shadi Bedoor
Western Michigan University

Date submitted: 01 Jul 2013
Electronic form version 1.4