Abstract Submitted for the DNP13 Meeting of The American Physical Society

Study of the ${}^{15}C(d, {}^{3}He){}^{14}B$ Reaction¹ S. BEDOOR, A.H. WUOS-MAA, J.C. LIGHTHALL, S.T. MARLEY, D.V. SHETTY, Western Michigan University, M. ALBERS, M. ALCORTA, S. ALMARAZ-CALDERON, B.B. BACK, C.R. HOFFMAN, R.C. PARDO, K.E. REHM, Argonne National Laboratory, P.F. BERTONE, Louisiana State University — We have studied the ¹⁴B nucleus employing the ${}^{15}C(d,{}^{3}He){}^{14}B$ reaction in inverse kinematics using HELIOS (the HELIcal Orbit Spectrometer) at the ATLAS facility at ANL. A ¹⁵C beam was produced using the In-Flight method. The ³He particles were detected with HELIOS. The recoiling ^{13, 14}B nuclei were identified in a set of silicon ΔE -E telescope, distinguishing bound and unbound states in ¹⁴B. From a previous study of the ${}^{13}B(d, p){}^{14}B$ reaction the $(2_1, 1_1)^-$ states were found to be admixtures of $\ell = 0$ and $\ell = 2$ made up of $\pi(0p_{3/2})^{-1} - \nu(1s_{1/2})$ and $\pi(0p_{3/2})^{-1} - \nu(0d_{5/2})$ configurations. The $(2_2, 1_2)^-$ excited states were not observed. A complementary reaction can identify the $(2_2, 1_2)^-$ states in order to track the single particle strength in ¹⁴B. In the current study, proton removal from ¹⁵C explores only the $\pi(0p_{3/2})^{-1} - \nu(1s_{1/2})$ component of states in ¹⁴B. The results provide a determination of 2^-_2 energy level and better constrain the $1s_{1/2}$ and $0d_{5/2}$ effective single–particle energies in ¹⁴B.

¹Work supported by the U. S. Department of Energy, Office of Nuclear Physics, under Contracts DE-FG02-04ER41320 and DE-AC02-06CH11357.

Shadi Bedoor Western Michigan University

Date submitted: 01 Jul 2013

Electronic form version 1.4