Measurement of the low-lying excitations in 96Mo by the 95Mo (d,p) reaction

SHUYA OTA, Japan Atomic Energy Agency / Rutgers University, JOLIE A. CIZEWSKI, ANDREW RATKIEWICZ, SEAN BURCHER, BRETT MANNING, SAMANTHA L. RICE, CALLUM SHAND, Rutgers University, JASON T. BURKE, ROBERT J. CASPERSON, NICHOLAS SCIELZO, Lawrence Livermore National Laboratory, ROBI A.E. AUSTIN, St. Mary’s University, CON BEAUSANG, RICHARD O. HUGHES, TIMOTHY J. ROSS, University of Richmond, MATT MCCLESKEY, Texas A&M University, WILLIAM A. PETERS, Oak Ridge Associated University — The 95Mo(d,p) reaction was studied at the 88-Inch Cyclotron at Texas A&M University with a 13-MeV (6.5 MeV/nucleon) deuteron beam and a self-supporting foil of 0.96 mg/cm2 95Mo target. The reaction protons were measured at forward angles of 30-60° with the STARS (Silicon Telescope Array for Reaction Studies) array of three segmented Micron S2 silicon detectors. This is the first study of the 95Mo(d,p) reaction and is part of the effort to validate the (d,pγ) reaction as a surrogate for neutron capture. Preliminary angular distribution results and a comparison with distorted wave calculations will be presented.

1This work is supported in part by JSPS Research Fellowship and the U.S. Department of Energy (DE-AC52-07NA27344 (LLNL), DE-FG52-08NA28552 (Rutgers, ORAU), DE-FG02-05ER41379 and DE-FG52-06NA26206 (Richmond)) and National Science Foundation

Shuya Ota
Japan Atomic Energy Agency / Rutgers University

Date submitted: 01 Jul 2013 Electronic form version 1.4