Abstract Submitted for the DNP13 Meeting of The American Physical Society

New Triple- α Reaction Rates from the Second $J^{\pi} = 2^+$ State in ¹²C¹ W.R. ZIMMERMAN, M.W. AHMED, S.S. HENSHAW, I. MAZUMDAR, J.M. MUELLER, L.S. MYERS, M.H. SIKORA, S. STAVE, H.R. WELLER, TUNL, C. FRÖHLICH, NCSU, M. GAI, LNS at Avery Point — The second $J^{\pi} = 2^+$ state in ¹²C, recently identified near 10 MeV in the ¹²C(γ,α)⁸Be reaction [1], can affect the triple- α reaction rates at high temperatures. These rates can determine the outcome of nucleosynthesis during supernovae and other explosive astrophysical scenarios. We present new high-temperature triple- α reaction rates calculated by including the 2⁺ state near 10 MeV. Simulations of explosive nucleosynthesis which include the νp process are being performed to investigate the possible implication of these new rates on the production of heavy elements during core-collapse supernovae.

[1] W. R. Zimmerman et al., Phys. Rev. Lett. 110, 152502 (2013)

¹Supported in part by U.S. Department of Energy, grant numbers DE-FG02-97ER41033 and DE-FG02-94ER40870.

> William Zimmerman TUNL

Date submitted: 01 Jul 2013

Electronic form version 1.4