Abstract Submitted for the DNP13 Meeting of The American Physical Society

4n contributions in populating unbound 10 He from 14 Be MICHAEL JONES, ZACH KOHLEY, JESSE SNYDER, THOMAS BAUMANN, JENNA SMITH, ARTEMIS SPYROU, MICHAEL THOENNESSEN, NSCL/MSU, MONA COLLABORATION — The ground state resonance of 10 He was recently measured from the decay energy of the 3-body system 8 He+n+n, and found to be at E=1.6(25) MeV with $\Gamma=1.8(4)$ MeV. The possibility of contributions from the emission of 4 neutrons has been considered, and higher order 4 and 5-body decay energy spectra were examined. Results show that it is necessary to account for 4n emission in the 2p2n removal reaction 14 Be(-2p2n) 10 He. Detailed Monte Carlo simulations were performed to simulate the emission of 2 non-resonant neutrons followed by the 2n decay of 10 He. Using GEANT4 and MENATE_R, the efficiency, resolution and acceptances of MoNA (Modular Neutron Array) were incorporated into the simulations. The inclusion of 4n emission allows the simultaneous fitting of the 2 and 3-body decay spectra while reproducing the experimentally observed 4 and 5-body spectra in addition to reproducing the observed multiplicity distribution.

Michael Jones NSCL/MSU

Date submitted: 01 Jul 2013 Electronic form version 1.4