Abstract Submitted
for the DNP13 Meeting of
The American Physical Society

*R*-Matrix Analysis of Particle Spectra from the T(t,2n)α Reaction at Low Energies

CARL R. BRUNE, Ohio University, JOSEPH A. CAGGIANO, DANIEL B. SAYRE, Lawrence Livermore National Laboratory, GERALD M. HALE, MARK W. PARIS, Los Alamos National Laboratory — The particle spectra from the low-energy T(t,2n)α reaction are of interest to several research areas, including fusion energy and the neutron-neutron scattering length. We present an *R*-Matrix model for the final states of this reaction, considering sequential neutron emission via \( l = 0 \) and \( n + α \) intermediate states as well as emission of a correlated \( l = 0 \) \( n + n \) (di-neutron) pair. The amplitudes for these processes are constructed to be antisymmetric under neutron exchange. The two-body \( n + α \) channel is highly constrained by existing experimental data. Substantial effects in the neutron and α-particle energy spectra are found to result from antisymmetrization as well as from the interference between different decay channels. Results for fits to the available experimental data will be presented.

\(^1\)Supported in part by Lawrence Livermore National Laboratory and the U.S. D.O.E. (NNSA) through grant No. DE-NA0001837.

Carl R. Brune
Ohio University

Date submitted: 01 Jul 2013

Electronic form version 1.4