Abstract Submitted
for the DNP13 Meeting of
The American Physical Society

Waveform Simulation for Pulse Shape Analysis Validation1 BEN-JAMIN SHANKS, University of North Carolina at Chapel Hill, MAJORANA COLLABORATION — Background reduction techniques are critical for successful detection of rare events. To facilitate its search for neutrinoless double beta ($0\nu\beta\beta$) decay, the MAJORANA DEMONSTRATOR aims to achieve a background goal of < 3 counts/tonne-year in the 4-keV-wide region of interest. The p-type point contact germanium detectors used in the DEMONSTRATOR are sensitive to the distribution of interaction sites in the crystal bulk. The signal generated by single-site events, such as the $0\nu\beta\beta$ decay signal, can be distinguished from multi-site background events using a pulse shape analysis (PSA) algorithm. The details of a simulation-based framework to validate PSA techniques are presented here.

1This work is supported by grants from the DOE Office of Nuclear Physics and the NSF Particle Astrophysics program.

Benjamin Shanks
University of North Carolina at Chapel Hill

Date submitted: 01 Jul 2013
Electronic form version 1.4