Kinetic energy of shakeoff atomic electrons from ^{37}K β^+ decay

J.A. BEHR, A. GORELOV, C. FARFAN, S. SMALE, K. OLCHANSKI, L. KURCHANANOV, TRIUMF, M. ANHOLM, U. British Columbia, R.S. BEHLING, B. FENKER, P.D. SHIDLING, M. MEHLMAN, D. MELCONIAN, Cyclotron Institute, Texas A&M U., D. ASHERY, Tel Aviv U., G. GWINNER, U. Manitoba, TRINAT COLLABORATION — We have measured the kinetic energies from 0 to 30 eV of atomic shakeoff electrons from the β^+ decay of ^{37}K. Despite much experimental and theoretical work on the distribution of final ion charge states, shakeoff electrons from β^- decay have only been measured with energies above 150 eV [Mitrokhovich, Nucl. Phys. Atom. Energy, 11 125 (2010)]. We use our magneto-optical trap’s time-varying magnetic quadrupole field combined with a uniform electric field as a spectrometer. Our result has more 15 eV electrons than a model using the sudden approximation and hydrogenic wavefunctions [Levinger Phys. Rev. 90 11 (1958)]. The total energy carried away by electrons is, as expected, a negligible correction to superallowed F_t values. Understanding the energy of these low-energy electrons is important for their use in precision β decay to select events coming from trapped atoms and start time-of-flight for the recoil ions. Our results could provide a benchmark for shakeoff electron calculations used for biological radiation damage [Lee, Comp. Math. Meth in Medicine doi:10.1155/2012/651475].

1Support: NSERC, NRC through TRIUMF, DOE ER41747 ER40773, State of Texas, Israel Science Foundation