Optimization of VANDLE for \(\beta\)-delayed neutron decay studies using Geant4\(^1\) SERGEY ILYUSHKIN, FREDERICK SARAZIN, Colorado School of Mines, ROBERT GRZYWACZ, MIGUEL MADURGA, STANLEY PAULAUSKAS, UTK, JOLIE CIZEWSKI, Rutgers, WILLIAM PETERS, ORAU, VANDLE COLLABORATION — The Versatile Array of Neutron Detectors at Low Energy (VANDLE) is a plastic-scintillator array designed for various experimental setups including \(\beta\)-delayed neutron spectroscopy and (d,n) transfer reactions in inverse kinematics. The neutron energy is determined through the time-of-flight technique. The array has energy resolution of \(\sim 120\) keV @ 1 MeV and energy threshold of \(\sim 100\) keV. We have developed a Geant4 simulation of VANDLE to optimize array geometry for different types of experiments and test neutron scattering models provided by Geant4. A typical \(\beta\)-delayed neutron decay study involves coupling with \(\gamma\) detectors to collect \(\beta\)-\(\gamma\) coincidence information. The experimental assembly including VANDLE bars, \(\beta\) plastic scintillators, HPGe detectors, along with the detector support structure was modeled to assist in the fine-tuning of the setup and give a detailed understanding of the array performance. The simulation was validated by comparing to available experimental data and could serve as an important guide for the design of future experiments.

\(^1\)Supported in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement No. DE-FG52-08NA28552.