Abstract Submitted for the DNP13 Meeting of The American Physical Society

Elastic scattering and neutron transfer of the $^{26}\mathrm{Mg} + ^{13}\mathrm{C}$ reaction MATTHEW MCCLESKEY, A. ALHARBY¹, A. BANU², V.Z. GOLDBERG, E. MCCLESKEY, B.T. ROEDER, A. SPIRIDON, L. TRACHE³, R.E. TRIBBLE, Texas A&M University Cyclotron Institute — Direct proton capture on $^{26}\mathrm{Si}$ is of interest for its role in the destruction of $^{26}\mathrm{Si}$ that would otherwise be available to $\beta+$ decay into $^{26m}\mathrm{Al}$. This is part of the network of reactions that influence the production and destruction of the important astrophysical observable $^{26}\mathrm{Al}$. The $^{13}\mathrm{C}(^{26}\mathrm{Mg},^{27}\mathrm{Mg})^{12}\mathrm{C}$ reaction at 12 MeV/nucleon has been measured at Texas A&M University Cyclotron Institute with the aim to determine ANC for $^{27}\mathrm{P} \leftrightarrow \mathrm{p} + ^{26}\mathrm{Si}$ via mirror symmetry. Details of the experiment as well as preliminary results will be presented.

¹present address: Faculty of Sciences, Physics Department, Princess Nora University Riyadh, Saudi Arabia

 $\label{eq:matthew_McCleskey} \mbox{Texas A\&M University Cyclotron Institute}$

Date submitted: 01 Jul 2013 Electronic form version 1.4

²present address: Department of Physics and Astronomy, James Madison University ³Now also at the National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania