Abstract Submitted for the DNP13 Meeting of The American Physical Society

The Beta-Delayed Proton and Gamma Decay of 27P for Nuclear Astrophysics E. MCCLESKEY, A. BANU¹, M. MCCLESKEY, B. ROEDER, A. SAASTAMOINEN, A. SPIRIDON, L. TRACHE², R.E. TRIBBLE, Cyclotron Institute, Texas A&M University, T. DAVINSON, D. DOHERTY, G.J. LOTAY, J. WALLACE, P.J. WOODS, University of Edinburgh, United Kingdom — The main creation site of ²⁶Al is currently under debate. The reactions for its creation or destruction are also not completely known. When ²⁶Al is created in novae, the reaction chain is: ²⁴Mg(p, γ)²⁵Al(β +v)²⁵Mg(p, γ)²⁶Al, but this chain can be by-passed by another chain: ²⁵Al(p, γ)²⁶Si(p, γ)²⁷P and it can also be destroyed directly. Another way to by-pass it is through ^{26m}Al(p, γ)²⁷Si* which is dominated by resonant capture. Using the Momentum Achromat Recoil Spectrometer (MARS) at the Texas A&M Cyclotron Institute and inverse kinematics, this destruction reaction was studied by the beta-delayed proton and gamma decay of ²⁷P. Due to selection rules, states populated above the proton threshold in the compound system (²⁷Si*) can decay to ^{26m}Al, which are the states of interest for the capture reaction.

¹James Madison University, VA, USA. ²IFIN-HH, Bucharest, Romania

> E. McCleskey Cyclotron Institute, Texas A&M University

Date submitted: 01 Jul 2013

Electronic form version 1.4