Nuclear structures near and beyond the neutron drip line studied by breakup reactions at SAMURAI
t at RIBF
TAKASHI NAKAMURA, Tokyo Institute of Technology

Some of the first results from kinematically complete measurements of breakup reactions on neutron-rich boron to oxygen isotopes, along and beyond the neutron drip line, are presented and discussed. These experiments were performed at the recently-commissioned large-acceptance multi-purpose spectrometer SAMURAI (Superconducting Analyser for Multi-particles from Radio-Isotope Beam) at the new-generation RI beam facility, RIBF, at RIKEN. The experiments aimed at probing the two-neutron Borromean halo nuclei, 19B and 22C, and at exploring the heavy oxygen isotopes, 25,26O, which are beyond the neutron drip line. The study of 19B and 22C has been made primarily by the Coulomb breakup, which is sensitive to the halo states and associated two-neutron correlations [1,2]. 22C has drawn much attention due to the possibility that it has the largest halo known [3]. In addition, 22C may also exhibit features consistent with the new magic number $N=16$, as was recently suggested by our inclusive measurement of the momentum distribution of 20C following breakup on a C target [4]. 25O and 26O have drawn much attention since these unbound nuclei may have keys to understand why the neutron drip line ends anomalously closer to the stability for oxygen isotopes. 25O and 26O have been produced by the proton removal reactions on 26F,27Ne, and 27F,28Ne, respectively, at 220-250 MeV/nucleon. Preliminary data are shown and discussed. Finally, some perspectives on future projects using the SAMURAI facility are presented.