One-Proton Breakup of 18F and the 17O(p,γ)18F Reaction in Classical Novae

BRYAN ISHERWOOD, A. BANU, James Madison University, Harrisonburg, VA 22807, E491 COLLABORATION —

Classical nova studies are of considerable interest for understanding the chemical evolution of the Galaxy. They have been proposed as the most significant source for the nucleosynthesis of the isotopes 13C, 15N, and 17O in the Universe. Novae are also likely to synthesize the short-lived radioisotope 18F (T$_{1/2}$ = 110 min), which is expected to be the most important contributor to the observed emission of 511 keV gamma radiation by space-based γ-ray telescopes. This emission is produced by electron-positron annihilation following the beta+ decay of radioactive nuclei. A detection of these gamma rays could significantly constrain the nova simulation models. 18F nucleosynthesis in classical novae strongly depends on the thermonuclear rate of the 17O(p,γ)18F reaction, which is part of the CNO cycle. This work presents preliminary results toward determination of the 17O(p,γ)18F reaction cross section, which was measured by the indirect method of one-proton nuclear breakup at intermediate energies. The experiment was carried out at GANIL using a beam of 18F at 40 MeV/u impinging on a carbon target. Longitudinal momentum distributions of the 17O breakup fragments were measured in coincidence with γ-rays emitted by 17O residues.

Bryan Isherwood
James Madison University, Harrisonburg, VA 22807