Abstract Submitted for the DNP13 Meeting of The American Physical Society

A tricky method for indirect measurement of electron Antineutrino mass AHMAD REZA ESTAKHR, Independent Researcher — During beta decay of rest neutron, an electron anti neutrino is also emitted. $n_o \rightarrow p^+ + e^- + \overline{\nu}_e$ by detecting momentum of proton and electron after decay and by using conservation laws of einstein's theory of relativity, i realized (indirectly) that electron anti neutrino is photon-like particle $E = \vec{P}c = \vec{P}_e c = \vec{P}_p c$ and its mass is $\overline{\nu}_e = \frac{E}{c^2} = 0.545626 \frac{Mev}{c^2}$ Essential Results: $n_o = E_p + E_e + (E = \vec{P}c) = \sqrt{\vec{P}_p^2 c^2 + p_o^2} + \sqrt{\vec{P}_e^2 c^2 + e_o^2} + E_{\overline{\nu}_e}$ where the p_o denotes Energy of rest proton and e_o denotes Energy of rest electron. $(E = \vec{P}c)$ denotes photon-like anti-neutrino. $\alpha_w = \frac{\vec{P}_e c}{E_e} = \frac{1}{1.370073665}$ This is electron weak-structure constant (it is almost 100.0 times stronger than fine-structure constant)

> Ahmad Reza Estakhr Independent Researcher

Date submitted: 03 Aug 2013

Electronic form version 1.4