Abstract Submitted for the DNP15 Meeting of The American Physical Society

Halo Effective Field Theory of 6He ARBIN THAPALIYA, Ohio University, CHEN JI, TRIUMF, DANIEL PHILLIPS, Ohio University — Halo nuclei exhibit separation of scales and are therefore amenable to an Effective Field Theory (EFT) description. In Halo EFT, ⁶He can be thought of as a tight ⁴He (α) core surrounded by two loosely bound neutrons (n), hence it constitutes an effective Borromean three-body system. The valence neutrons of ⁶He interact with the α -core predominantly through a p-wave (² $P_{3/2}$) resonance while the two neutrons are in the relative resonant ¹S₀ partial wave. The leading order (LO) Halo EFT calculations using momentum-space Faddeev equations pertinent to such a treatment of bound ⁶He were carried out by Ji et al. in Phys. Rev. C **90**, 044004 (2014). As an extension to that work, we are investigating ⁶He up to NLO within Halo EFT. In this talk, I will demonstrate how the NLO piece of the ¹S₀ nn dimer propagator, the NLO piece of the ² $P_{3/2}$ n α dimer propagator and the contact n α vertex in the ² $S_{1/2}$ channel enter the NLO amplitude for the nn α system. I will discuss the divergences and renormalization at this order and show results for the Faddeev components.

Arbin Thapaliya Ohio University

Date submitted: 08 Jun 2015

Electronic form version 1.4