Abstract Submitted for the DNP15 Meeting of The American Physical Society

Measurement of the fusion excitation function for ¹⁹O + ¹²C at near barrier energies¹ VARINDERJIT SINGH, T.K. STEINBACH, J. VADAS, B.B. WIGGINS, S. HUDAN, R.T. DESOUZA, Indiana Univ - Bloomington, L.T. BABY, V. TRIPATHI, S.A. KUVIN, I. WIEDENHOVER, Florida State University — Fusion of neutron-rich light nuclei in the outer crust of an accreting neutron star has been proposed as responsible for triggering X-ray super-bursts. The underlying hypothesis in this proposition is that the fusion of neutron-rich nuclei is enhanced as compared to stable nuclei. To investigate this hypothesis, an experiment has been performed to measure the fusion excitation function for ¹⁸O and ¹⁹O nuclei incident on a ¹²C target. A beam of ¹⁹O was produced by the ¹⁸O(d,p) reaction at Florida State University and separated using the RESOLUT mass spectrometer. The resulting ¹⁹O beam bombarded a 100 μ g/cm² ¹²C target at an intensity of 2-4 x 10³ p/s. Evaporation residues resulting from the de-excitation of the fusion product were distinguished by measuring their energy and time-of-flight. Using silicon detectors, micro-channel plate detectors, and an ionization chamber, evaporation residues were detected in the angular range $\theta_{lab} \leq 23^{\circ}$ with high efficiency. Initial experimental results including measurement of the fusion cross-section to approximately the 100 mb level will be presented. The measured excitation function will be compared to theoretical predictions.

¹Supported by the US DOE under Grand No. DEFG02-88ER-40404

Varinderjit Singh Indiana Univ - Bloomington

Date submitted: 24 Jun 2015 Electronic form version 1.4