Measurement of the fusion excitation function for 19O + 12C at near barrier energies1 VARINDERJIT SINGH, T.K. STEINBACH, J. VADAS, B.B. WIGGINS, S. HUDAN, R.T. DESOUZA, Indiana Univ - Bloomington, L.T. BABY, V. TRIPATHI, S.A. KUVIN, I. WIEDENHOVER, Florida State University — Fusion of neutron-rich light nuclei in the outer crust of an accreting neutron star has been proposed as responsible for triggering X-ray super-bursts. The underlying hypothesis in this proposition is that the fusion of neutron-rich nuclei is enhanced as compared to stable nuclei. To investigate this hypothesis, an experiment has been performed to measure the fusion excitation function for 18O and 19O nuclei incident on a 12C target. A beam of 19O was produced by the 18O(d,p) reaction at Florida State University and separated using the RESOLUT mass spectrometer. The resulting 19O beam bombarded a 100 μg/cm2 12C target at an intensity of 2-4 x 103 p/s. Evaporation residues resulting from the de-excitation of the fusion product were distinguished by measuring their energy and time-of-flight. Using silicon detectors, micro-channel plate detectors, and an ionization chamber, evaporation residues were detected in the angular range $\theta_{lab} \leq 23^\circ$ with high efficiency. Initial experimental results including measurement of the fusion cross-section to approximately the 100 mb level will be presented. The measured excitation function will be compared to theoretical predictions.

1Supported by the US DOE under Grand No. DEFG02-88ER-40404

Varinderjit Singh
Indiana Univ - Bloomington

Date submitted: 24 Jun 2015 Electronic form version 1.4