Shape coexistence in and near 68Ni
SCOTT SUCHYTA, University of California, Berkeley

The nuclei in the vicinity of 68Ni have been the subject of considerable experimental and theoretical work focused on studying the evolution of nuclear structure. Situated at the $Z = 28$ proton shell closure and the fragile $N = 40$ subshell closure, 68Ni is an important nucleus to understand as a progression is made from stable to increasingly exotic nuclei. The nature and decay of the first excited state in 68Ni has been thoroughly investigated in recent years. The first excited state has a spin and parity of 0^+, can be described by the excitation of neutrons across the $N = 40$ gap, and has been interpreted as a moderately oblate-deformed state that coexists with the spherical ground state. A second low-energy excited 0^+ state is also known to exist in 68Ni. Based on comparisons with theoretical calculations, the second excited 0^+ state has been proposed to be strongly prolate deformed and based primarily on the excitation of protons across the $Z = 28$ gap, leading to the inference that three different 0^+ states with three distinct shapes coexist below 3 MeV in 68Ni. Additional studies suggest that shape coexistence is not unique to 68Ni in this neutron-rich region near $Z = 28$. For instance, in the neighboring even-even isotope 70Ni, theory predicts that a prolate-deformed minimum in the potential energy surface occurs at even lower energy than in 68Ni, and experimental evidence is consistent with the theoretical prediction. The results of recent experiments studying shape coexistence in the region, particularly investigations of 68,70Ni, will be presented and theoretical interpretations will be discussed.